
self-driving cars60,61. Companies such as Mobileye and NVIDIA are 
using such ConvNet-based methods in their upcoming vision sys-
tems for cars. Other applications gaining importance involve natural 
language understanding14 and speech recognition7. 

Despite these successes, ConvNets were largely forsaken by the 
mainstream computer-vision and machine-learning communities 
until the ImageNet competition in 2012. When deep convolutional 
networks were applied to a data set of about a million images from 
the web that contained 1,000 different classes, they achieved spec-
tacular results, almost halving the error rates of the best compet-
ing approaches1. This success came from the efficient use of GPUs, 
ReLUs, a new regularization technique called dropout62, and tech-
niques to generate more training examples by deforming the existing 
ones. This success has brought about a revolution in computer vision; 
ConvNets are now the dominant approach for almost all recognition 
and detection tasks4,58,59,63–65 and approach human performance on 
some tasks. A recent stunning demonstration combines ConvNets 
and recurrent net modules for the generation of image captions 
(Fig. 3). 

Recent ConvNet architectures have 10 to 20 layers of ReLUs, hun-
dreds of millions of weights, and billions of connections between 
units. Whereas training such large networks could have taken weeks 
only two years ago, progress in hardware, software and algorithm 
parallelization have reduced training times to a few hours. 

The performance of ConvNet-based vision systems has caused 
most major technology companies, including Google, Facebook, 

Microsoft, IBM, Yahoo!, Twitter and Adobe, as well as a quickly 
growing number of start-ups to initiate research and development 
projects and to deploy ConvNet-based image understanding products 
and services. 

ConvNets are easily amenable to efficient hardware implemen-
tations in chips or field-programmable gate arrays66,67. A number 
of companies such as NVIDIA, Mobileye, Intel, Qualcomm and 
Samsung are developing ConvNet chips to enable real-time vision 
applications in smartphones, cameras, robots and self-driving cars. 

Distributed representations and language processing 
Deep-learning theory shows that deep nets have two different expo-
nential advantages over classic learning algorithms that do not use 
distributed representations21. Both of these advantages arise from the 
power of composition and depend on the underlying data-generating 
distribution having an appropriate componential structure40. First, 
learning distributed representations enable generalization to new 
combinations of the values of learned features beyond those seen 
during training (for example, 2n combinations are possible with n 
binary features)68,69. Second, composing layers of representation in 
a deep net brings the potential for another exponential advantage70 
(exponential in the depth). 

The hidden layers of a multilayer neural network learn to repre-
sent the network’s inputs in a way that makes it easy to predict the 
target outputs. This is nicely demonstrated by training a multilayer 
neural network to predict the next word in a sequence from a local 

Figure 3 | From image to text.  Captions generated by a recurrent neural 
network (RNN) taking, as extra input, the representation extracted by a deep 
convolution neural network (CNN) from a test image, with the RNN trained to 
‘translate’ high-level representations of images into captions (top). Reproduced 

with permission from ref. 102. When the RNN is given the ability to focus its 
attention on a different location in the input image (middle and bottom; the 
lighter patches were given more attention) as it generates each word (bold), we 
found86 that it exploits this to achieve better ‘translation’ of images into captions.
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context of earlier words71. Each word in the context is presented to 
the network as a one-of-N vector, that is, one component has a value 
of 1 and the rest are 0. In the first layer, each word creates a different 
pattern of activations, or word vectors (Fig. 4). In a language model, 
the other layers of the network learn to convert the input word vec-
tors into an output word vector for the predicted next word, which 
can be used to predict the probability for any word in the vocabulary 
to appear as the next word. The network learns word vectors that 
contain many active components each of which can be interpreted 
as a separate feature of the word, as was first demonstrated27 in the 
context of learning distributed representations for symbols. These 
semantic features were not explicitly present in the input. They were 
discovered by the learning procedure as a good way of factorizing 
the structured relationships between the input and output symbols 
into multiple ‘micro-rules’. Learning word vectors turned out to also 
work very well when the word sequences come from a large corpus 
of real text and the individual micro-rules are unreliable71. When 
trained to predict the next word in a news story, for example, the 
learned word vectors for Tuesday and Wednesday are very similar, as 
are the word vectors for Sweden and Norway. Such representations 
are called distributed representations because their elements (the 
features) are not mutually exclusive and their many configurations 
correspond to the variations seen in the observed data. These word 
vectors are composed of learned features that were not determined 
ahead of time by experts, but automatically discovered by the neural 
network. Vector representations of words learned from text are now 
very widely used in natural language applications14,17,72–76. 

The issue of representation lies at the heart of the debate between 
the logic-inspired and the neural-network-inspired paradigms for 
cognition. In the logic-inspired paradigm, an instance of a symbol is 
something for which the only property is that it is either identical or 
non-identical to other symbol instances. It has no internal structure 
that is relevant to its use; and to reason with symbols, they must be 
bound to the variables in judiciously chosen rules of inference. By 
contrast, neural networks just use big activity vectors, big weight 
matrices and scalar non-linearities to perform the type of fast ‘intui-
tive’ inference that underpins effortless commonsense reasoning. 

Before the introduction of neural language models71, the standard 
approach to statistical modelling of language did not exploit distrib-
uted representations: it was based on counting frequencies of occur-
rences of short symbol sequences of length up to N (called N-grams). 
The number of possible N-grams is on the order of VN, where V is 
the vocabulary size, so taking into account a context of more than a 

handful of words would require very large training corpora. N-grams 
treat each word as an atomic unit, so they cannot generalize across 
semantically related sequences of words, whereas neural language 
models can because they associate each word with a vector of real 
valued features, and semantically related words end up close to each 
other in that vector space (Fig. 4). 

Recurrent neural networks 
When backpropagation was first introduced, its most exciting use was 
for training recurrent neural networks (RNNs). For tasks that involve 
sequential inputs, such as speech and language, it is often better to 
use RNNs (Fig. 5). RNNs process an input sequence one element at a 
time, maintaining in their hidden units a ‘state vector’ that implicitly 
contains information about the history of all the past elements of 
the sequence. When we consider the outputs of the hidden units at 
different discrete time steps as if they were the outputs of different 
neurons in a deep multilayer network (Fig. 5, right), it becomes clear 
how we can apply backpropagation to train RNNs. 

RNNs are very powerful dynamic systems, but training them has 
proved to be problematic because the backpropagated gradients 
either grow or shrink at each time step, so over many time steps they 
typically explode or vanish77,78. 

Thanks to advances in their architecture79,80 and ways of training 
them81,82, RNNs have been found to be very good at predicting the 
next character in the text83 or the next word in a sequence75, but they 
can also be used for more complex tasks. For example, after reading 
an English sentence one word at a time, an English ‘encoder’ network 
can be trained so that the final state vector of its hidden units is a good 
representation of the thought expressed by the sentence. This thought 
vector can then be used as the initial hidden state of (or as extra input 
to) a jointly trained French ‘decoder’ network, which outputs a prob-
ability distribution for the first word of the French translation. If a 
particular first word is chosen from this distribution and provided 
as input to the decoder network it will then output a probability dis-
tribution for the second word of the translation and so on until a 
full stop is chosen17,72,76. Overall, this process generates sequences of 
French words according to a probability distribution that depends on 
the English sentence. This rather naive way of performing machine 
translation has quickly become competitive with the state-of-the-art, 
and this raises serious doubts about whether understanding a sen-
tence requires anything like the internal symbolic expressions that are 
manipulated by using inference rules. It is more compatible with the 
view that everyday reasoning involves many simultaneous analogies 

Figure 4 | Visualizing the learned word vectors.  On the left is an illustration 
of word representations learned for modelling language, non-linearly projected 
to 2D for visualization using the t-SNE algorithm103. On the right is a 2D 
representation of phrases learned by an English-to-French encoder–decoder 
recurrent neural network75. One can observe that semantically similar words 

or sequences of words are mapped to nearby representations. The distributed 
representations of words are obtained by using backpropagation to jointly learn 
a representation for each word and a function that predicts a target quantity 
such as the next word in a sequence (for language modelling) or a whole 
sequence of translated words (for machine translation)18,75.
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that each contribute plausibility to a conclusion84,85. 
Instead of translating the meaning of a French sentence into an 

English sentence, one can learn to ‘translate’ the meaning of an image 
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden 
layer. The decoder is an RNN similar to the ones used for machine 
translation and neural language modelling. There has been a surge of 
interest in such systems recently (see examples mentioned in ref. 86). 

RNNs, once unfolded in time (Fig. 5), can be seen as very deep 
feedforward networks in which all the layers share the same weights. 
Although their main purpose is to learn long-term dependencies, 
theoretical and empirical evidence shows that it is difficult to learn 
to store information for very long78.  

To correct for that, one idea is to augment the network with an 
explicit memory. The first proposal of this kind is the long short-term 
memory (LSTM) networks that use special hidden units, the natural 
behaviour of which is to remember inputs for a long time79. A special 
unit called the memory cell acts like an accumulator or a gated leaky 
neuron: it has a connection to itself at the next time step that has a 
weight of one, so it copies its own real-valued state and accumulates 
the external signal, but this self-connection is multiplicatively gated 
by another unit that learns to decide when to clear the content of the 
memory. 

LSTM networks have subsequently proved to be more effective 
than conventional RNNs, especially when they have several layers for 
each time step87, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the 
transcription. LSTM networks or related forms of gated units are also 
currently used for the encoder and decoder networks that perform 
so well at machine translation17,72,76. 

Over the past year, several authors have made different proposals to 
augment RNNs with a memory module. Proposals include the Neural 
Turing Machine in which the network is augmented by a ‘tape-like’ 
memory that the RNN can choose to read from or write to88, and 
memory networks, in which a regular network is augmented by a 
kind of associative memory89. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The 
memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 

a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
that require complex inference90. In one test example, the network is 
shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  

The future of deep learning 
Unsupervised learning91–98 had a catalytic effect in reviving interest in 
deep learning, but has since been overshadowed by the successes of 
purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of symbolic 
expressions by operations on large vectors101. ■
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